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In this paper we develop a more efficient three-stage implicit Runge-Kutta method of order 6 for solving 
first order initial value problems of ordinary differential equations. Collocation method is used to derive 
Continuous schemes in which both the interpolation and collocation points are at perturbed Gaussian 
points. This gives a higher order scheme, which is more efficient and stable than the existing similar 
ones. Simple linear problems are used to check its level of accuracy and stability. 
 
Key words: Implicit, more efficient, stable, collocation methods, Perturbed Gaussian points and error 
estimates. 

 
 
INTRODUCTION 
 
Implicit Runge-Kutta methods are A-stable and hence, 
very efficient for solving both Stiff and non- Stiff problems 
of ordinary differential equations (ODEs). Implicit Runge-
Kutta methods were earlier developed by Kuntzmann 
(Butcher, 1964, 1988) etc. 

There are different types of implicit Runge-Kutta 
methods, examples are Singly implicit methods (Butcher 

and Jackiewicz, 1997) with order ; 

Diagonal implicit methods (Butcher and Jackiewicz, 1998; 
Kuntzmann, 1961) and Multiply implicit method with order 

  

The construction of multiply or full implicit methods are 
based on the theory of Gauss quadrature, where the 
nodes of integration are the transformed zeros of 
Legendre polynomial from (-1, 1) onto (0,1). At the 
moment we have schemes up to order Six. The existing 
Sixth order scheme (Press et al., 2007) is given as 
follows: 

        (1) 
 
Where 
 

 
 

 
 

  
 
(Agam, 2014). 
 
Construction of schemes higher than 6 is very tedious 
and almost  impossible  to  derive  because  the  zeros  of 
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Legendre polynomials of order 4 and above are very 
complex. Alternative methods are the Radau and Lobatto 
method (Yakubu, 2010), Diagonal implicit methods 
(Butcher and Jackiewicz, 1998; Kuntzmann, 1961). 
These are good but have low order reduction. Other 
methods include efficient numerical methods for highly 
Oscillatory ODEs (Petzol, 1981), method for solving 
ODEs II (Hairer and Warmer, 1996) etc. 

In this work, we shall improve on the 6th order implicit 
Runge-Kutta method by adding a perturbation on the 
Gaussian points of the third order Legendre polynomial 
and using Collocation method (Onumanyi et al., 1994), to 
derive a new higher order scheme. 
 
 
DERIVATION OF IMPLICIT RUNGE-KUTTA METHOD 
FOR FIRST ODEs 
 
Given a differential equation  
 

                   (2) 

 
We consider a polynomial of the form 
 

                (3) 
 
where t denotes the number of interpolation points 

 is the distinct collocation 

points   and  are smooth root 

vector functions. 

We can represent  and  by polynomial of 

form 
 

                      (4) 
 

                   (5) 
 

with constant coefficients  and  to be 

determined. 
Substituting Equations (4 and 5) into (3), we have 

 

       (6) 
 
where 

 
 
 
 

 
 

Now we assume a power series of  of the 

form 
 

 
 
as a basis solution for Equation (2), interpolating 

Equation (6) at  and collocating at 

 , we have the following system of 

equations: 
 

 
 

                 (7) 
 
Equation (7) yields a system of simultaneous equation of 
the form: 
 

 

 

 

 

                   (8) 

 
where 
 

 
 
are the parameters to be determined. 
When Equation (8) is arranged in matrix equation form 
we have  
             

              (9) 

 
That is,  

Our D matrix is 



 
 
 
 

                           (10) 

 

The D matrix is non-singular and has inverse  , 

using Maple mathematical software to determine the 

value of C and solving for  

We obtain Continuous scheme as 
  

  

 

  

 

 
     (11) 

 

Evaluating Equation (11) at with 

 

 .  

 
These are perturbed Quassian points (approximate zero 
of Legendre polynomial of order 3 on (0, 1)), which gives 
the following discrete schemes: 
 

  
 

  

 

     (12) 

 
To convert to Runge-Kutta the three discrete schemes 
must satisfy Equation (2) that is 

 

  also 

 

  , we therefore 

 have: 
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  (13) 
 
In substituting for 
 

, 
 
we obtain the following: 
 

 
 

 
 

 
 

 
 

 
 

 
 
Hence the general Runge-Kutta scheme for Equation (2) 
is given as  
 

.  

 

 are the weights of the Gauss 

quadrature and 
 

 
 

Now from Equation (11), choose 
 

     to  obtain  the
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values of  at  to obtain 

 

 

 
Thus, our general solution is 
 

        (14) 

 

where  are defined in Equation (13). 

 
 
ANALYSIS OF THE SCHEME 
 
(1) Order, Consistency and Stability of the schemes. The 
following Press et al. (2007), Implicit Runge-Kutta 
methods, based on Gaussian quadrature have order  

𝑝 = 2𝑠   for an S stage method. Thus, the order of our 

proposed scheme is 𝑝 = 2𝑠 = 6    
(2) The proposed scheme is consistent because it 
satisfies the Runge-Kutta conditions: 
 

 𝑎𝑖𝑗 = 𝐶𝑖      𝑎𝑛𝑑  𝑏𝑖 = 1

3

𝑖=1

3

𝑗=0

 

 (Press et al., 2007). 
 
(3) The stability test proportion weight was used; 

𝑦′ = 𝑞𝑦    where q is a constant and we used the stability 

function    
  

  
 

Where 
 
 

 

The domain of   is: 
 

Dim 
 
 

 
Since our method is based on Gaussian quadrature 
method and related methods, A- stability is achievable, 
(Press et al., 2007). 
 
 
ERROR ESTIMATIONS 
 
There are many different ways of error estimations, e.g 
Adaptive methods; Taylor’s series methods etc. However 
adaptive method for implicit scheme is too complicated 
and almost impossible to derive, the Taylor’s series 
expansion and Richardson interpolation approach was 
used to obtain a local or global error bound,  by  choosing 

 
 
 
 
too different step lengths  respectively. We 

obtained the error. 
  

  
 

where  and   
 
 are the solutions of the method 

with step size 
   
  respectively. 

 
 
NUMERICAL EXPERIMENTS 
 
Here, we shall use one linear problem and stiff problem 
with exact solutions to compare and contrast with the 
existing 6

th
 order method and our new implicit 6

th
 order 

method to determine efficiency and stability of our new 
scheme. 
 
Example 1: 

  

  
 

Theoretical solution: 
 
, 

 
the approximate solutions and Error graph of Problem 1, 
are shown in Table 1 and Figure 1 respectively. 
 
 
Example 2 
 

 
 

Theoretical solution: , 

 
the approximate solutions and error graph of Problem 2, 
are shown in Table 2 and Figure 2 respectively. 
 
 
DISCUSSION 
 

The second problem is the stiff problem yet the solution is 
still better than the existing method, Figure 2. Also in this 
paper we derived an improved 6

th
 order implicit Runge-

Kutta method for solution of first order ODEs. This 
method is more efficient and stable than the existing 6

th
 

order implicit method (1.01). 
In the two problems, we observed that our new method 

is more efficient, stable and less costly in the 
implementation. Also, the new scheme suggests the best 
method of calculating local error bounds by using 
Richardson   interpolation   approach.   This    method   is
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Table 1. Approximate solution to problem 1. 
 

 Exact solution Method (1.01) 
Error of 

method (1.01) 
Present method 

Absolute error of new 

method 

0.1 0.524979187478940 0.524979187478863 5.4 E(-14) 0.524979187478924 1.60 E(-14) 

0.2 0.549833997312478 0.549833997312478 1.53E(-13) 0.549833997312448 3.00E(-14) 

0.3 0.574442516811658 0.574442516811432 2.26E(-13) 0.574442516811616 4.2E(-14) 

0.4 0.598687660112452 0.598687660112155 2.97E(-13) 0.598687660112399 5.30E(-14) 

0.5 0.622459331201856 0.622459331201492 3.64E(-13) 0.622459331201795 6.10E(-14) 
 
 
  

 
 

 
 
Figure 1. Error graph of problem1. 

 
 
 

Table 2. Approximate solution to problem 2. 
 

 Exact solution Method (1.01) 
Error of 

method (1.01) 
Present method 

Absolute error of 
new method 

0.1 0.998657928234444 0.998656011623680 7.82 E(-06) 0.998656041603738 1.89 E(-06) 

0.2 0.603793035989310 0.603791313613691 1.72E(-06) 0.603791340555450 1.69E(-06) 

0.3 0.481435906578825 0.481434745710183 1.16E(-06) 0.48143476388714 1.14E(-06) 

0.4 0.481524407956732 0.481523712474935 6.95E(-07) 0.481523723353784 6.80E(-07) 

0.5 0.536631277777468 0.536630887152740 3.91E(-07) 0.536630893262955 3.85E(-07) 
 

 
 

 
 

Figure 2. Error graph of problem 2. 
 

 
 

simpler than other methods which require a derivative 
method which are very tedious. 
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